Select-and-Act
Skip to main content

Publications

Publication of the project results


WP1a
  1. Hjorth J, Blackwell KT, Kotaleski JH (2009) Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity J Neurosci, 29:5276-86.
  2. Planert H, Szydlowski S, Hjorth J, Grillner S, Silberberg G. (2010) Dynamics of Synaptic Transmission between Fast-Spiking Interneurons and Striatal Projection Neurons of the Direct and Indirect Pathways. J. Neuroscience 30:3499-507.
  3. Bolam, J.P. (2010) Microcircuits of the striatum. In: Handbook of Brain Microcircuits. Eds: G.M. Shepherd and S. Grillner. Oxford University Press, pp 109-119.
  4. Doig, Moss and Bolam (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci. 30:14610-18.
  5. Planert H, Berger TK, Silberberg G (2012). Membrane properties of striatal direct and indirect pathway neuron and their modulation.by dopamine in mouse and rat slices. PLoS ONE, under review
  6. Ellender, T., Harwood, J., Kosillo, P., Capogna, M. and Bolam, J.P. (2012) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J. Neuroscience, submitted.
WP1b
  1. Ericsson J, Silberberg G, Robertson B, Wikström MA and Grillner S. (2011) Striatal cellular properties conserved from lampreys to mammals. J Physiol 589:2979-2992.
  2. Stephenson-Jones M, Ericsson J. Samuelsson E, Robertson B and Grillner S. (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21:1081-1091.
  3. Stephenson-Jones M, Floros O, Robertson B and Grillner S. (2012) Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc Natl Acad Sci USA 109:E164-173.
  4. Stephenson-Jones M, Ericsson J, Robertson B and Grillner S. (2012) Evolution of the basal ganglia; dual output pathways conserved throughout vertebrate phylogeny. J Comp Neurol. Doi: 10.1002/cne.23087.
  5. Ericsson J, Stephenson-Jones M, Robertson B, Silberberg G and Grillner S. (2012) Evolutionary conserved differences in pallial and thalamic short-term synaptic plasticity in striatum. Submitted to J Neurosci.
WP1c
  1. Hjorth J, Blackwell KT, Kotaleski JH (2009) Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity J Neurosci, 29:5276-86
  2. Klaus A, Planert H, Hjorth JJ, Berke JD, Silberberg G, Kotaleski JH (2011) Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact, Frontiers Syst Neurosci. 5:57
  3. Lindahl M, Kotaleski J (2011) Short term plasticity within the basal ganglia - a systems level computational investigation, BMC Neuroscience 2011, 12(Suppl 1):P145 (CNS 2011).
  4. Evans R.C., Morera-Herreras T, Cui Y, Du K., Sheehan T., Kotaleski J.H., Venance L., Blackwell K.T. (2012) The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. (PLoS Comp Biol, in press)
WP2a
  1. Moss J, Ungless MA and Bolam JP. (2011) Dopaminergic axons in different subdivisions of the rat striatal complex do not express vesicular glutamate transporters. Eur J Neurosci 33:1205-11.
  2. Ellender, T., Heurta-Ocampo, I., Deisseroth K., Capogna, M. and Bolam, J.P. (2011) Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J. Neuroscience. 31:15340-15351.
  3. Stephenson-Jones M, Floros O, Robertson B and Grillner S. (2012) Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc Natl Acad Sci USA 109:E164-173.
  4. Robertson B, Huerta-Ocampo I, Ericsson J, Stephenson-Jones M, Perez-Fernandez J, Bolam JP, Diaz-Heijtz R and Grillner S. The dopamine D2 receptor gene in lamprey, its expression in the striatum and cellular effects of D2 receptor activation. PLOS ONE, in press.
  5. Planert H, Berger TK, Grillner S and Silberberg G (2012). Dopaminergic effects on direct and indirect pathway neurons. PLoS ONE Under Review.
WP2b
  1. Hellgren Kotaleski J, Blackwell KT (2010) Modeling the molecular mechanisms of synaptic plasticity using systems biology approaches, Nature Reviews Neuroscience 11:239-51.
  2. Lindskog M, Halnes G, Oliveira RF, Hellgren Kotaleski J & Blackwell KT (2009). Biochemical networks in psychiatric disease. Book chapter, to appear in: Tretter, F., Gebicke-Haerter, P.J., Winterer, G., Mendoza, E. (Eds): Systems biology and psychiatry: New frontiers in psychobiological understanding of mental disorders.
  3. Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression, Frontiers Computational Neurosci. 4:152
  4. Paille V, Du K, Fino E, Hellgren Kotaleski J, Venance L (2012) GABA operates as a Hebbian/anti-Hebbian switch for spike-timing-dependent plasticity. Submitted to Neuron.
  5. Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Heliaz M, Potjans TC, Bhalla US, Diesmann M, Kotaleski JH, Ekeberg O (2010) Run-Time Interoperability Between Neuronal Network simulators Based on the MUSIC Framework, Neuroinformatics, 8:43-60.
WP3a
  1. Thorn CA, Atallah HE, Howe MW, Graybiel AM (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron, 66:781-795.
  2. Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Kopell N, Buckner RL, Graybiel AM, Moore CI, Boyden ES (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol, 105:1393-1405.
  3. Amemori K-I, Gibb LG, Graybiel AM (2011) Shifting responsibly: The importance of striatal modularity to reinforcement learning in uncertain environments. Front Hum Neurosci, 5:47.
WP3b
  1. Adler A, Katabi S, Finkes I, Israel Z, Prut Y, Bergman H (2012) Temporal convergence of dynamic cell assemblies in the striato-pallidal network. J Neurosci 32:2473-2484.
  2. Parush,N., Tishby,N., and Bergman,H. (2011). Dopaminergic Balance between Reward Maximization and Policy Complexity. Front. Syst. Neurosci., 5 (22): 1-11.
  3. Joshua, M., Adler, A., Prut,Y., Vaadia, E., Wickens, J.R., and Bergman, H. (2009). Synchronization of midbrain dopaminergic neurons is enhanced by rewarding events. Neuron 62, 695-704.
  4. Joshua,M., Adler,A., and Bergman,H. (2009). The dynamics of dopamine in control of motor behavior. Current Opinion Neurobiol., 19:615-620.
  5. Adler A, Katabi S, Finkes I, Israel Z, Prut Y and Bergman H. (2012) Temporal convergence of dynamic cell assemblies in the striato-pallidal network, Journal of Neuroscience 32:2473-2484.
  6. Goldberg JA and Bergman H. (2011) Computational physiology of the neural networks of the primate globus pallidus: Function and dysfunction. Accepted for publication in the special edition of Neuroscience: Function and Dysfunction of the Basal Ganglia. Editors: Steve Lisberger and Mark Bevan. Neuroscience 198:171-192.
  7. Haber SN, Adler A and Bergman H. (2011) THE BASAL GANGLIA; in: The Human Nervous System (2ed edition), eds. G. Paxinos, and J. Mai, Academic Press.
WP4a
  1. Kozlov A, Huss M, Lansner A, Kotaleski JH, Grillner S (2009) Simple cellular and network control principles govern complex patterns of motor behavior. PNAS, 106:20027-32.
  2. Lansner A, Lundqvist M (2010). Modeling Coordination in the Neocortex at the Microcircuit and Global Network Level. In Von der Malsburg, C., W. A. Phillips, and W. Singer, eds. 2010. Dynamic Coordination in the Brain: From Neurons to Mind. Strüngmann, Forum Report, vol. 5. Cambridge, MA: MIT Press.
  3. Lundqvist M, Compte A, and Lansner A (2010). Bistable, Irregular Firing and Population Oscillations in a Modular Attractor Memory Network. PLoS Comp Biol 6:1.
  4. Djurfeldt M, Hjorth J, Eppler J, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Hellgren Kotaleski J and Ekeberg O (2010) Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework, Neuroinformatics 8:43-60.
  5. Sarvestani KI, Lindahl M, Hellgren-Kotaleski J, and Ekeberg O (2011) The arbitration-extension hypothesis: a hierarchial interpretation of the functional organization of the Basal Ganglia, Front Sys Neurosci. 5:13
  6. Pradeep K, Silberberg G, and Lansner A (2012) A Cortical Attractor Network with Martinotti Cells Driven by Facilitating Synapses. PLoS One, In press.
  7. Lundqvist M, Herman P and Lansner A. (2011) Theta and Gamma Power Increases and Alpha/beta Power Decreases with Memory Load in an Attractor Network Model. J Cogn Neurosci, 23: 3008-3020.
  8. Lundqvist, M, Herman P and Lansner A. (2012) Variability of Spike Firing During Theta-coupled Replay of Memories in a Simulated Attractor Network. Brain Res 1434: 152-161.
WP4b
  1. Berthet P, Hellgren-Kotaleski J, Lansner A (2012) Action selection performance of a reconfigurable Basal Ganglia model with a Hebbian-Bayesian Go-NoGo connectivity (submitted to Frontiers in Neuroscience).

Background publications


Grillner laboratory

  1. Grillner S. (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 52(5):751-66.
  2. Grillner, S. and Graybiel, A.M. (2006) Microcircuits - The interface between neurons and global brain function. The MIT Press.
  3. Bjaalie, J.G. and Grillner, S. (2007) Global neuroinformatics: the International Neuroinformatics Coordinating Facility. J Neurosci. 27(14):3613-5.
  4. Grillner S, Hellgren J, Menard A, Saitoh K, Wikstrom MA. (2005) Mechanisms for selection of basic motor programs--roles for the striatum and pallidum. Trends Neurosci. 28(7):364-70.
  5. Grillner S. , Markram H, De Schutter E, Silberberg G, LeBeau FE (2005) Microcircuits in action--from CPGs to neocortex. Trends Neurosci. 28(10):525-33.
  6. Cangiano L, Grillner S. (2005) Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. J Neurosci. 25(4):923-35.
  7. Grillner S. (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 4(7):573-86.

Bolam laboratory

  1. Lacey, C.J., Bolam, J.P. and Magill, P.J (2007) Central lateral and parafascicular neurons of the intralaminar thalamus provide functionally distinct inputs to striatum. J. Neuroscience (in press).
  2. Magill, P.J., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J.P. and Brown, P. (2006) Changes in functional connectivity within the rat striato-pallidal axis during global brain activation in vivo. J. Neurosci. 26:6318-6329.
  3. Lacey, C.J., Boyes, J., Gerlach, O., Chen, L., Magill, P.J and Bolam, J.P. (2005) GABAB receptors at glutamatergic synapses in the rat striatum. Neuroscience 136:1083-1095.
  4. Sharott, A., Magill, P.J., Bolam, J.P. and Brown, P. (2005) Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of anaesthetised rats. J. Physiol. 562.3:951-963.
  5. Ungless, M.A., Magill, P.J. and Bolam, J.P. (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:2040-2042

Bergman laboratory

  1. Constance Hammond, Hagai Bergman and Peter Brown (2007) Pathological synchronization in Parkinson's disease: networks, models and treatments; conditionally accepted to Trends in Neuroscience.
  2. Shlomo Elias, Mati Joshua, Joshua A. Goldberg, Gali Heimer, David Arkadir, Genela Morris and Hagai Bergman (2007) Statistical Properties of Pauses of the High-Frequency Discharge Neurons in the External Segment of the Globus Pallidus, Journal of Neuroscience, 27(10):2525-2538.
  3. Michal Rivlin-Etzion, Odeya Marmor, Gali Heimer, Aeyal Raz, Asaph Nini and Hagai Bergman (2006) Basal Ganglia Oscillations and Pathophysiology of Movement Disorders Current Opinion in Neurobiology, Motor Systems section, 16 (6), 629-637.
  4. Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nature Neurosci 9:1057-1063.
  5. Genela Morris, David Arkadir, Alon Nevet, Eilon Vaadia and Hagai Bergman (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons, Neuron, 43, 133-143.

Lansner laboratory

  1. Huss M., Lansner A., Wallén P., El Manira A., Grillner S. and Hellgren Kotaleski J. (2007): Roles of ionic currents in lamprey cpg neurons: a modeling study. J. Neurophysiol., (in press).
  2. Lundqvist M., Rehn M., Djurfeldt M. and Lansner A. (2006): Attractor dynamics in a modular network model of the neocortex. Network: Computation in Neural Systems: 17, 253-276.
  3. De Schutter E., Ekeberg Ö., Kotaleski J. H., Achard P. and Lansner A. (2005): Biophysically detailed modelling of microcircuits and beyond. Trends Neurosci.: 28, 562-569.
  4. Yuste R., MacLean J. N., Smith J. and Lansner A. (2005): The cortex as a central pattern generator. Nature Rev. Neurosci.: 6, 477-483.
  5. Kozlov A. K., Hellgren Kotaleski J., Aurell E., Grillner S. and Lansner A. (2001): Modeling of substance p and 5-ht induced synaptic plasticity in the lamprey spinal cpg - consequences for network pattern generation. J Comput Neurosci: 11, 183-200.

Graybiel laboratory

  1. DeCoteau W.E., Thorn C.A., Gibson D.J., Courtemanche R., Mitra P., Kubota Y., Graybiel A.M. (2007) Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. PNAS 104:5644-5649.
  2. DeCoteau W.E., Thorn C.A., Gibson D.J., Courtemanche R., Mitra P., Kubota Y., Graybiel A.M. (2007) Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviours. J. Neurophysiol.
  3. Tippett, L.J., Waldvogel, H.J., Thomas, S.J., Hogg, V.M., van Roon-Mom, W., Synek, B.J., Graybiel, A.M. and Faull, R.L.M. (2007) Striosomes and mood dysfunction in Huntington's disease. Brain, 130:206-221.
  4. Graybiel, A.M. (2005) The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol., 15:638-644.
  5. Barnes, T. Kubota, Y., Hu, D., Jin, D.Z., and Graybiel, A.M. (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158-1161.
  6. Fujii, N. and Graybiel, A.M. (2005) Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks. PNAS 102:9032-9037.
  7. Saka, E., Goodrich, C., Harlan, P., Madras, B., and Graybiel, A.M. (2004) Repetitive behaviours in monkeys are linked to specific striatal activation maps. J. Neurosci. 24:7557-7565.